<u>Компонент ОПОП 11.05.01 Радиоэлектронные системы и комплексы</u> <u>Специализация Радиоэлектронные системы управления и передачи информации</u>

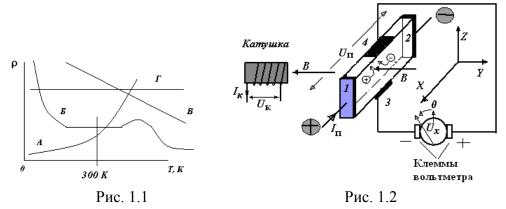
<u>Б1.О.13</u> шифр дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ВХОДНОГО КОНТРОЛЯ ЗНАНИЙ

По дисциплине (модулю)	Радиоматериалы и радиокомпоненты		
Разработчик (и): <u>Власов А.Б.</u>	Утверждено на заседании кафедры <u>электрооборудования судов</u> наименование кафедры		
профессор должность	протокол № 1_ от 10.09.2024 года И.О. заведующего кафедрой электрооборудования судов		
<u>д.т.н., профессор</u> ученая степень, звание	Пономаренко Д.А.		

Входной контроль знаний проводится среди всех обучающихся первого курса очной формы обучения по общим гуманитарным, математическим, естественно-научным дисциплинам (история, иностранный язык, физика, химия, информатика, математика и т.п.), а также по специальным дисциплинам у обучающихся, осваивающих образовательные программы в области подготовки членов экипажей морских судов.

Цель входного контроля знаний - определение уровня подготовленности обучающихся к освоению дисциплины (модуля), применение дифференцированного подхода к обучающимся при реализации дисциплины (модуля) с учетом полученных результатов.


Содержание оценочных материалов обеспечивает вариативность заданий (не менее 3-х вариантов), уровень сложности которых не превышает требований, предусмотренных программами основного общего образования или требований к результатам освоения предшествующих дисциплин (модулей), изучение которых необходимо для успешного освоения указанной дисциплины (модуля).

Входной контроль проводится в форме бланкового тестирования на первом занятии по дисциплине (модулю).

Рекомендуемое общее количество тестовых заданий в одном варианте - 25. Рекомендуемое время выполнения - 45 мин.

В ФОС включен типовой вариант тестового задания:

- **1.** Какова сила постоянного тока, если за один час при постоянном токе через поперечное сечение провода был перенесен заряд 180 Кл? **A**: 180 A; **Б**: 0,05 A; **B**: 3 A; Γ : 20 A.
- **2.** Как изменится сопротивление полупроводника в форме параллелепипеда, если его длину и ширину увеличить в два раза? **A**: не изменится; **Б**: возрастает в 2 раза;
 - В: уменьшится в 2 раза; Г: зависит от типа полупроводника
- **3.** Энергия W, запасаемая в конденсаторе, емкостью C при напряжении U, равна A: W = U/C; \mathbf{B} : $W = CU^2/2$; \mathbf{B} : $W = C^2U/2$; \mathbf{C} : U.
- **4.** Энергия W, запасаемая в катушке индуктивности L при токе I, равна **A**: W = I/L; **Б**: $W = LI^2/2$; **B**: $W = L^2I/2$; **C**: $U = LI^2/2$; **B**: $U = LI^2/2$; **B**: $U = LI^2/2$; **C**: $U = LI^2/2$; **C**: U = LI/2; **C**:
- **5.** Какая из указанных кривых (рис. 1.1, 1.2) соответствует изменению удельного электрического сопротивления р примесного полупроводника от температуры.

6. Какие носители заряда являются основными в кристалле Si с примесью As? **A**: электроны; **B**: дырки; **B**: ионы доноров; Γ : ионы акцепторов.

- 7. Какие носители заряда являются основными в кристалле Ge с примесью In? **А**: электроны; **Б**: дырки; **B**: ионы доноров; Γ : ионы акцепторов.
- **8.** К полупроводнику р-типа сопротивлением R длиной 1 приложено напряжение U, так что "+" источника находится справа. Возникает напряженность электрического поля E и ток I. Следовательно... **A:** вектор $E = U \cdot l$ и направлен влево; I = U/R и направлен влево; **B:** вектор E = U/l и направлен вправо; I = U/R и направлен вправо.
- **9.** Кристаллы Ge и Si находятся при T=300 К. Кристаллы легированы донорной примесью с концентрацией доноров $N_{\pi}=10^{22}$ м⁻³. В каком кристалле больше основных носителей? Температура полной ионизации примесей $T_{\rm u}<100$ К. **A**: в Ge; **B**: в Si; **B**: одинаковое количество; Γ : зависит от степени легирования.
- **10.** Кристаллы Ge и Si находятся при T = 300 К. Кристаллы легированы донорной примесью с концентрацией доноров $N = 10^{22}$ м⁻³. В каком кристалле больше неосновных носителей? Температура полной ионизации примесей $T_{\rm u} < 100$ К, закон действующих масс $np = n_i^2$. **А**: в Ge; **Б**: в Si; **В**: одинаковое количество; Γ : зависит от степени легирования.
- **11.** Кристаллы Ge и Si находятся при T = 300 К. Кристаллы легированы донорной примесью с концентрацией доноров $N = 10^{22}$ м⁻³. В каком кристалле меньше неосновных носителей? **A**: в Ge; **B**: одинаковое количество; Γ : зависит от степени легирования.
- **12.** Сопротивление какого элемента зависит от приложенного напряжения? **A**: термистор; **B**: позистор; **B**: варикап; Γ : варистор.
- **13.** У какого элемента емкость зависит от приложенного напряжения? **A**: у термистора; **B**: у позистора; **B**: у варикапа; **Г**: у варистора.
- **14.** У какого элемента сопротивление увеличивается с ростом температуры? **А**: у термистора; **Б**: у позистора; **В**: у варикапа; **Г**: у варистора.
- **15.** Чем больше концентрация основных носителей, тем...**A**: больше сопротивление полупроводника; **B**: меньше проводимость полупроводника; **B**: больше концентрация неосновных носителей; Γ : меньше концентрация неосновных носителей.
- **16.** Что является свободными носителями заряда в полупроводнике p-типа? **А**: Электроны и дырки; **Б**: только дырки; **В**: только электроны; Γ : доноры.
- **17.** Что является свободными носителями заряда в собственном полупроводнике? **A**: электроны и дырки; **Б**: только дырки; **B**: только электроны; Γ : доноры.
- **18.** Как влияет на фотопроводимость γ полупроводника излучение, если его частота ν стала меньше, чем значение красной границы $\nu_{\kappa p}$? **A**: γ растет; Б: γ падает; **B**: γ больше не изменяется; Γ : γ исчезает.
- **19**. В чистый Si добавили пятивалентную примесь, в результате чего образовался полупроводник, называемый...**A**: собственный; **Б**: донорный; **B**: акцепторный; **Г**: грязный.
- **20**. В чистый Ge добавили трехвалентную примесь, в результате чего образовался полупроводник, называемый...**A**: собственный; **Б**: донорный; **B**: акцепторный; **Г**: грязный.
- **21**. При увеличении температуры сопротивление металлического проводника...**A**: растет; **B**: падает; **B**: не изменяется; Γ : зависит от типа металла.
- **22**. Термисторы (ТК ρ < 0) могут быть изготовлены на основе...**A**: металлов; **Б**: только собственных полупроводников; **B**: любых полупроводников; **Г**: позисторов.

- **23.** Полупроводниковый диод предназначен для...**A**: генерации переменного напряжения; **B**: усиления переменного напряжения; **B**: генерации прямоугольных импульсов; Γ : выпрямления переменного напряжения.
- **24.** Полупроводниковым диодом называют прибор с двумя выводами и одним...**A**: p-n-переходом; **Б**: управляющим электродом; **B**: коллектором; Γ : эмиттером.
- **25.** При возрастании температуры обратный ток диода...**A**: всегда увеличивается; **Б**: всегда уменьшается; **B**: не зависит от температуры; Γ : у одних диодов растет, у других уменьшается.

Критерии и шкала оценивания тестирования

Оценка	Критерии оценивания (количество правильных ответов)	Уровень подготовленности
Отлично	22 - 25 баллов	Высокий
Хорошо	18 - 21 баллов	Средний
Удовлетворительно	15 -18 баллов	Пороговый
Неудовлетворительно	14 баллов и менее	Ниже порогового

Результаты входного контроля носят диагностический характер, не влияют на результаты промежуточной аттестации и не являются показателем успеваемости обучающегося.